Quantization of Compact Symplectic Manifolds
نویسندگان
چکیده
منابع مشابه
Non-compact Symplectic Toric Manifolds
The paradigmatic result in symplectic toric geometry is the paper of Delzant that classifies compact connected symplectic manifolds with effective completely integrable torus actions, the so called (compact) symplectic toric manifolds. The moment map induces an embedding of the quotient of the manifold by the torus action into the dual of the Lie algebra of the torus; its image is a simple unim...
متن کاملPath Integral Quantization and Riemannian-Symplectic Manifolds
We develop a mathematically well-defined path integral formalism for general symplectic manifolds. We argue that in order to make a path integral quantization covariant under general coordinate transformations on the phase space and involve a genuine functional measure that is both finite and countably additive, the phase space manifold should be equipped with a Riemannian structure (metric). A...
متن کاملMinimal models of compact symplectic semitoric manifolds
A symplectic semitoric manifold is a symplectic 4-manifold endowed with a Hamiltonian (S1×R)-action satisfying certain conditions. The goal of this paper is to construct a new symplectic invariant of symplectic semitoric manifolds, the helix, and give applications. The helix is a symplectic analogue of the fan of a nonsingular complete toric variety in algebraic geometry, that takes into accoun...
متن کاملDeformation quantization modules on complex symplectic manifolds
We study modules over the algebroid stack WX of deformation quantization on a complex symplectic manifold X and recall some results: construction of an algebra for ⋆-products, existence of (twisted) simple modules along smooth Lagrangian submanifolds, perversity of the complex of solutions for regular holonomic WX -modules, finiteness and duality for the composition of “good” kernels. As a coro...
متن کاملBrst Quantization of Quasi-symplectic Manifolds and Beyond
A class of factorizable Poisson brackets is studied which includes almost all reasonable Poisson manifolds. In the simplest case these brackets can be associated with symplectic Lie algebroids (or, in another terminology, with triangular Lie bialgebroids associated to a nondegenerate r-matrix). The BRST theory is applied to describe the geometry underlying these brackets and to develop a covari...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Journal of Geometric Analysis
سال: 2015
ISSN: 1050-6926,1559-002X
DOI: 10.1007/s12220-015-9644-0